Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.167
Filtrar
1.
J Med Chem ; 67(8): 6537-6548, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38603561

RESUMO

Herein, we have compared the effectivity of light-based photoactivated cancer therapy and ultrasound-based sonodynamic therapy with Re(I)-tricarbonyl complexes (Re1-Re3) against cancer cells. The observed photophysical and TD-DFT calculations indicated the potential of Re1-Re3 to act as good anticancer agents under visible light/ultrasound exposure. Re1 did not display any dark- or light- or ultrasound-triggered anticancer activity. However, Re2 and Re3 displayed concentration-dependent anticancer activity upon light and ultrasound exposure. Interestingly, Re3 produced 1O2 and OH• on light/ultrasound exposure. Moreover, Re3 induced NADH photo-oxidation in PBS and produced H2O2. To the best of our knowledge, NADH photo-oxidation has been achieved here with the Re(I) complex for the first time in PBS. Additionally, Re3 released CO upon light/ultrasound exposure. The cell death mechanism revealed that Re3 produced an apoptotic cell death response in HeLa cells via ROS generation. Interestingly, Re3 showed slightly better anticancer activity under light exposure compared to ultrasound exposure.


Assuntos
Antineoplásicos , Fenantrolinas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Ligantes , Células HeLa , Fenantrolinas/química , Fenantrolinas/farmacologia , Rênio/química , Rênio/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/efeitos da radiação , Apoptose/efeitos dos fármacos , Luz , Espécies Reativas de Oxigênio/metabolismo , Terapia por Ultrassom , Fotoquimioterapia , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias/tratamento farmacológico
2.
J Med Chem ; 67(8): 6189-6206, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38577779

RESUMO

Identification of intracellular targets of anticancer drug candidates provides key information on their mechanism of action. Exploiting the ability of the anticancer (C∧N)-chelated half-sandwich iridium(III) complexes to covalently bind proteins, click chemistry with a bioorthogonal azido probe was used to localize a phenyloxazoline-chelated iridium complex within cells and profile its interactome at the proteome-wide scale. Proteins involved in protein folding and actin cytoskeleton regulation were identified as high-affinity targets. Upon iridium complex treatment, the folding activity of Heat Shock Protein HSP90 was inhibited in vitro and major cytoskeleton disorganization was observed. A wide array of imaging and biochemical methods validated selected targets and provided a multiscale overview of the effects of this complex on live human cells. We demonstrate that it behaves as a dual agent, inducing both electrophilic and oxidative stresses in cells that account for its cytotoxicity. The proposed methodological workflow can open innovative avenues in metallodrug discovery.


Assuntos
Antineoplásicos , Complexos de Coordenação , Irídio , Estresse Oxidativo , Humanos , Irídio/química , Irídio/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/química , Química Click
3.
Inorg Chem ; 63(16): 7493-7503, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38578920

RESUMO

The relentless increase in drug resistance of platinum-based chemotherapeutics has opened the scope for other new cancer therapies with novel mechanisms of action (MoA). Recently, photocatalytic cancer therapy, an intrusive catalytic treatment, is receiving significant interest due to its multitargeting cell death mechanism with high selectivity. Here, we report the synthesis and characterization of three photoresponsive Ru(II) complexes, viz., [Ru(ph-tpy)(bpy)Cl]PF6 (Ru1), [Ru(ph-tpy)(phen)Cl]PF6 (Ru2), and [Ru(ph-tpy)(aip)Cl]PF6 (Ru3), where, ph-tpy = 4'-phenyl-2,2':6',2″-terpyridine, bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, and aip = 2-(anthracen-9-yl)-1H-imidazo[4,5-f][1,10] phenanthroline, showing photocatalytic anticancer activity. The X-ray crystal structures of Ru1 and Ru2 revealed a distorted octahedral geometry with a RuN5Cl core. The complexes showed an intense absorption band in the 440-600 nm range corresponding to the metal-to-ligand charge transfer (MLCT) that was further used to achieve the green light-induced photocatalytic anticancer effect. The mitochondria-targeting photostable complex Ru3 induced phototoxicity with IC50 and PI values of ca. 0.7 µM and 88, respectively, under white light irradiation and ca. 1.9 µM and 35 under green light irradiation against HeLa cells. The complexes (Ru1-Ru3) showed negligible dark cytotoxicity toward normal splenocytes (IC50s > 50 µM). The cell death mechanistic study revealed that Ru3 induced ROS-mediated apoptosis in HeLa cells via mitochondrial depolarization under white or green light exposure. Interestingly, Ru3 also acted as a highly potent catalyst for NADH photo-oxidation under green light. This NADH photo-oxidation process also contributed to the photocytotoxicity of the complexes. Overall, Ru3 presented multitargeting synergistic type I and type II photochemotherapeutic effects.


Assuntos
Antineoplásicos , Complexos de Coordenação , Luz , Piridinas , Rutênio , Humanos , Rutênio/química , Rutênio/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Piridinas/química , Piridinas/farmacologia , Catálise , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/efeitos da radiação , Ensaios de Seleção de Medicamentos Antitumorais , Processos Fotoquímicos , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Células HeLa , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , 60495
4.
Inorg Chem ; 63(16): 7520-7539, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38590210

RESUMO

A new set of binuclear arene ruthenium complexes [Ru2(p-cymene)2(k4-N2OS)(L1-L3)Cl2] (Ru2L1-Ru2L3) encompassing furan-2-carboxamide-based aroylthiourea derivatives (H2L1-H2L3) was synthesized and characterized by various spectral and analytical techniques. Single-crystal XRD analysis unveils the N^O and N^S mixed monobasic bidentate coordination of the ligands constructing N, S, Cl/N, O, and Cl legged piano stool octahedral geometry. DFT analysis demonstrates the predilection for the formation of stable arene ruthenium complexes. In vitro antiproliferative activity of the complexes was examined against human cervical (HeLa), breast (MCF-7), and lung (A549) cancerous and noncancerous monkey kidney epithelial (Vero) cells. All the complexes are more efficacious against HeLa and MCF-7 cells with low inhibitory doses (3.86-11.02 µM). Specifically, Ru2L3 incorporating p-cymene and -OCH3 fragments exhibits high lipophilicity, significant cytotoxicity against cancer cells, and lower toxicity on noncancerous cells. Staining analysis indicates the apoptosis-associated cell morphological changes expressively in MCF-7 cells. Mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) analyses reveal that Ru2L3 can raise ROS levels, reduce MMP, and trigger mitochondrial dysfunction-mediated apoptosis. The catalytic oxidation of glutathione (GSH) to its disulfide form (GSSG) by the complexes may simultaneously increase the ROS levels, alluding to their observed cytotoxicity and apoptosis induction. Flow cytometry determined the quantitative classification of late apoptosis and S-phase arrest in MCF-7 and HeLa cells. Western blotting analysis confirmed that the complexes promote apoptosis by upregulating Caspase-3 and Caspase-9 and downregulating BCL-2. Molecular docking studies unfolded the strong binding affinities of the complexes with VEGFR2, an angiogenic signaling receptor, and BCL2, Cyclin D1, and HER2 proteins typically overexpressed on tumor cells.


Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Complexos de Coordenação , Ensaios de Seleção de Medicamentos Antitumorais , Rutênio , Tioureia , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Rutênio/química , Rutênio/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Tioureia/química , Tioureia/farmacologia , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Animais , Estrutura Molecular , Furanos/química , Furanos/farmacologia , Furanos/síntese química , Quelantes/química , Quelantes/farmacologia , Quelantes/síntese química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Chlorocebus aethiops , Espécies Reativas de Oxigênio/metabolismo , Células Vero , Relação Estrutura-Atividade
5.
J Med Chem ; 67(8): 6673-6686, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38569098

RESUMO

The use of benzimidazole-based trinuclear ruthenium(II)-arene complexes (1-3) to selectively target the rare cancer rhabdomyosarcoma is reported. Preliminary cytotoxic evaluations of the ruthenium complexes in an eight-cancer cell line panel revealed enhanced, selective cytotoxicity toward rhabdomyosarcoma cells (RMS). The trinuclear complex 1 was noted to show superior short- and long-term cytotoxicity in RMS cell lines and enhanced selectivity relative to cisplatin. Remarkably, 1 inhibits the migration of metastatic RMS cells and maintains superior activity in a 3D multicellular spheroid model in comparison to that of the clinically used cisplatin. Mechanistic insights reveal that 1 effectively induces genomic DNA damage, initiates autophagy, and prompts the intrinsic and extrinsic apoptotic pathways in RMS cells. To the best of our knowledge, 1 is the first trinuclear ruthenium(II) arene complex to selectively kill RMS cells in 2D and 3D cell cultures.


Assuntos
Antineoplásicos , Apoptose , Complexos de Coordenação , Rabdomiossarcoma , Rutênio , Humanos , Rabdomiossarcoma/tratamento farmacológico , Rabdomiossarcoma/patologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Rutênio/química , Rutênio/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Apoptose/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade , Dano ao DNA/efeitos dos fármacos , Benzimidazóis/farmacologia , Benzimidazóis/química , Benzimidazóis/síntese química , Autofagia/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos
6.
J Med Chem ; 67(8): 6738-6748, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526421

RESUMO

The development and optimization of metal-based anticancer drugs with novel cytotoxic mechanisms have emerged as key strategies to overcome chemotherapeutic resistance and side effects. Agents that simultaneously induce ferroptosis and autophagic death have received extensive attention as potential modalities for cancer therapy. However, only a limited set of drugs or treatment modalities can synergistically induce ferroptosis and autophagic tumor cell death. In this work, we designed and synthesized four new cycloplatinated (II) complexes harboring an isoquinoline alkaloid C∧N ligand. On screening the in vitro activity of these agents, we found that Pt-3 exhibited greater selectivity of cytotoxicity, decreased resistance factors, and improved anticancer activity compared to cisplatin. Furthermore, Pt-3, which we demonstrate can initiate potent ferritinophagy-dependent ferroptosis, exhibits less toxic and better therapeutic activity than cisplatin in vivo. Our results identify Pt-3 as a promising candidate or paradigm for further drug development in cancer treatment.


Assuntos
Antineoplásicos , Ferroptose , Isoquinolinas , Neoplasias de Mama Triplo Negativas , Ferroptose/efeitos dos fármacos , Humanos , Isoquinolinas/farmacologia , Isoquinolinas/química , Isoquinolinas/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Feminino , Linhagem Celular Tumoral , Ferritinas/metabolismo , Autofagia/efeitos dos fármacos , Camundongos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Alcaloides/farmacologia , Alcaloides/química , Alcaloides/síntese química , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células/efeitos dos fármacos , Camundongos Nus
7.
J Med Chem ; 67(8): 6081-6098, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38401050

RESUMO

In this work, we investigated the anticancer activity of several novel silver(I) 2,2'-bipyridine complexes containing either triphenylphosphane (PPh3) or 1,2-bis(diphenylphosphino)ethane (dppe) ligands. All compounds were characterized by diverse analytical methods including ESI-MS spectrometry; NMR, UV-vis, and FTIR spectroscopies; and elemental analysis. Moreover, several compounds were also studied by X-ray single-crystal diffraction. Subsequently, the compounds were investigated for their anticancer activity against drug-resistant and -sensitive cancer cells. Noteworthily, neither carboplatin and oxaliplatin resistance nor p53 deletion impacted on their anticancer efficacy. MES-OV cells displayed exceptional hypersensitivity to the dppe-containing drugs. This effect was not based on thioredoxin reductase inhibition, enhanced drug uptake, or apoptosis induction. In contrast, dppe silver drugs induced paraptosis, a novel recently described form of programmed cell death. Together with the good tumor specificity of this compound's class, this work suggests that dppe-containing silver complexes could be interesting drug candidates for the treatment of resistant ovarian cancer.


Assuntos
2,2'-Dipiridil , Antineoplásicos , Fosfinas , Prata , Humanos , Fosfinas/química , Fosfinas/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Prata/química , Prata/farmacologia , 2,2'-Dipiridil/química , 2,2'-Dipiridil/farmacologia , Linhagem Celular Tumoral , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Apoptose/efeitos dos fármacos , Cristalografia por Raios X , Ligantes , Morte Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos
8.
Molecules ; 27(11)2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35684561

RESUMO

2,4-bis (3,5-dimethyl-1H-pyrazol-1-yl)-6-methoxy-1,3,5-triazine (BPMT) pincer ligand was used to synthesize the new [Zn(BPMT)(NCS)2] (1) and [Zn(BPMT)(Br)2] (2) complexes by a reaction with Zn(NO3)2·6H2O in the presence of either KSCN or KBr, respectively. The structure of complex 1 has been exclusively confirmed using single crystal X-ray diffraction. In this neutral heteroleptic complex, the BPMT is a pincer chelate coordinating the Zn(II) ion via three interactions with the two pyrazole moieties and the s-triazine core. Hence, BPMT is a tridentate NNN-chelate. The coordination environment of Zn(II) is completed by two strong interactions with two terminal SCN- ions via the N-atom. Hence, the Zn(II) is penta-coordinated with a distorted square pyramidal coordination geometry. Hirshfeld analysis indicated the predominance of H…H, H…C and N…H intermolecular interactions. Additionally, the S…H, S…C and S…N contacts are the most significant. The free ligand has no or weak antimicrobial, antioxidant and anticancer activities while the studied Zn(II) complexes showed interesting biological activity. Complex 1 has excellent antibacterial activity against B. subtilis (2.4 µg/mL) and P. vulgaris (4.8 µg/mL) compared to Gentamycin (4.8 µg/mL). Additionally, complex 1 (78.09 ± 4.23 µg/mL) has better antioxidant activity than 2 (365.60 ± 20.89 µg/mL). In addition, complex 1 (43.86 ± 3.12 µg/mL) and 2 (30.23 ± 1.26 µg/mL) have 8 and 12 times the anticancer activity of the free BPMT ligand (372.79 ± 13.64 µg/mL).


Assuntos
Complexos de Coordenação , Compostos Organometálicos , Quelantes/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cristalografia por Raios X , Íons , Ligantes , Modelos Moleculares , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Triazinas/química , Triazinas/farmacologia , Zinco/química
9.
Dalton Trans ; 51(11): 4466-4476, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35229854

RESUMO

The emergence of nanoscience and its effect on the development of diverse scientific fields, particularly materials chemistry, are well known today. In this study, a new di-substituted phthalonitrile derivative, namely 4,5-bis((4-(dimethylamino)phenyl)ethynyl)phthalonitrile (1), and its octa-substituted metal phthalocyanines {M = Co (2), Zn (3)} were prepared. All the newly synthesized compounds were characterized using a number of spectroscopic approaches, including FT-IR, mass, NMR, and UV-vis spectroscopy. The resultant compounds modified the surface of the gold nanoparticles (NG-1-3). Characterization of the newly synthesized conjugates was carried out by transmission electron microscopy. The antioxidant activity of compounds 1-3, NG-1-3, and NG was evaluated using the DPPH scavenging process and the highest radical scavenging activity was obtained with compounds 1, NG-1, 2, and NG-2 (100%). The antimicrobial activity of compounds 1-3, NG-1-3, and NG was studied using a microdilution assay and the most effective antimicrobial activity was obtained for NG-3 against all the tested microorganisms. The newly synthesized compounds demonstrated high DNA cleavage activity. Compounds 1-3, NG-1-3, and NG significantly inhibited the microbial cell viability of E. coli and exhibited perfect antimicrobial photodynamic therapeutic activity with 100% inhibition after 20 min LED irradiation. Besides, the biofilm inhibition activity of compounds 1-3, NG-1-3, and NG on the growth of S. aureus and P. aeruginosa were examined and compounds 1-3 and NG-1-3, especially NG-1-3, displayed high biofilm inhibition activities.


Assuntos
Antibacterianos/farmacologia , Antioxidantes/farmacologia , Complexos de Coordenação/farmacologia , Escherichia coli/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Antioxidantes/síntese química , Antioxidantes/química , Compostos de Bifenilo/antagonistas & inibidores , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Isoindóis/química , Isoindóis/farmacologia , Nanopartículas Metálicas , Metais Pesados/química , Metais Pesados/farmacologia , Testes de Sensibilidade Microbiana , Picratos/antagonistas & inibidores
10.
Inorg Chem ; 61(6): 2733-2744, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35102739

RESUMO

Alzheimer's disease (AD) is a devastating neurological disorder for which soluble oligomers of the peptide amyloid-ß (Aß) are now recognized as the neurotoxic species. Metal-based therapeutics are uniquely suited to target Aß, with ruthenium-based (Ru) complexes emerging as propitious candidates. Recently, azole-based Ru(III) complexes were observed to modulate the aggregation of Aß in solution, where the inclusion of a primary amine proximal to the ligand coordination site improved the activity of the complexes. To advance these structure-activity relationships, a series of oxazole-based Ru complexes were prepared and evaluated for their ability to modulate Aß aggregation. From these studies, a lead candidate, Oc, emerged that had superior activity relative to its azole predecessors in modulating the aggregation of soluble Aß and diminishing its cytotoxicity. Further evaluation of Oc demonstrated its ability to disrupt formed Aß aggregates, resulting in smaller amorphous species. Because altering both sides of the aggregation equilibrium for Aß has not been previously suggested for metal-based complexes for AD, this work represents an exciting new avenue for improved therapeutic success.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/antagonistas & inibidores , Complexos de Coordenação/farmacologia , Fármacos Neuroprotetores/farmacologia , Oxazóis/farmacologia , Rutênio/farmacologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Sobrevivência Celular , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Conformação Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Oxazóis/química , Agregados Proteicos/efeitos dos fármacos , Ratos , Rutênio/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
11.
Molecules ; 27(4)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35209121

RESUMO

This study aimed at fabricating gold (Au), iron (Fe) and selenium (Se) nanoparticles (NPs) using various natural plant extracts from the Fertile Crescent area and evaluating their potential application as antioxidant and biocompatible agents to be used in the pharmaceutical field, especially in drug delivery. The Au-NPs were synthesized using Ephedra alata and Pistacia lentiscus extracts, whereas the Fe-NPs and Se-NPs were synthesized using peel, fruit and seed extracts of Punica granatum. The phytofabricated NPs were characterized by the UV-visible spectroscopy, scanning electron microscope, Fourier transform infrared spectroscopy, X-ray diffraction (XRD) and energy-dispersive X-ray (EDS) spectroscopy. Scanning electron microscope technique showed that the synthesized NPs surface was spherical, and the particle size analysis confirmed a particle size of 50 nm. The crystalline nature of the NPs was confirmed by the XRD analysis. All synthesized NPs were found to be biocompatible in the fibroblast and human erythroleukemic cell lines. Se-NPs showed a dose-dependent antitumor activity as evidenced from the experimental results with breast cancer (MCF-7) cells. A dose-dependent, free-radical scavenging effect of the Au-NPs and Se-NPs was observed in the DPPH (2,2-Diphenyl-1-picrylhydrazyl) assay, with the highest effect recorded for Au-NPs.


Assuntos
Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , Ouro/química , Química Verde , Ferro/química , Nanopartículas Metálicas/química , Compostos Fitoquímicos/química , Selênio/química , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Antioxidantes/síntese química , Antioxidantes/farmacologia , Complexos de Coordenação/química , Humanos , Células MCF-7 , Nanopartículas Metálicas/ultraestrutura , Análise Espectral
12.
J Am Chem Soc ; 144(7): 3210-3221, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35157448

RESUMO

Activation of inert molecules like CO2 is often mediated by cooperative chemistry between two reactive sites within a catalytic assembly, the most common form of which is Lewis acid/base bifunctionality observed in both natural metalloenzymes and synthetic systems. Here, we disclose a heterobinuclear complex with an Al-Fe bond that instead activates CO2 and other substrates through cooperative behavior of two radical intermediates. The complex Ldipp(Me)AlFp (2, Ldipp = HC{(CMe)(2,6-iPr2C6H3N)}2, Fp = FeCp(CO)2, Cp = η5-C5H5) was found to insert CO2 and cyclohexene oxide, producing LdippAl(Me)(µ:κ2-O2C)Fp (3) and LdippAl(Me)(µ-OC6H10)Fp (4), respectively. Detailed mechanistic studies indicate unusual pathways in which (i) the Al-Fe bond dissociates homolytically to generate formally AlII and FeI metalloradicals, then (ii) the metalloradicals add to substrate in a pairwise fashion initiated by O-coordination to Al. The accessibility of this unusual mechanism is aided, in part, by the redox noninnocent nature of Ldipp that stabilizes the formally AlII intermediates, instead giving them predominantly AlIII-like physical character. The redox noninnocent nature of the radical intermediates was elucidated through direct observation of LdippAl(Me)(OCPh2) (22), a metalloradical species generated by addition of benzophenone to 2. Complex 22 was characterized by X-band EPR, Q-band EPR, and ENDOR spectroscopies as well as computational modeling. The "radical pair" pathway represents an unprecedented mechanism for CO2 activation.


Assuntos
Dióxido de Carbono/química , Complexos de Coordenação/química , Cicloexenos/química , Compostos de Epóxi/química , Radicais Livres/química , Alumínio/química , Complexos de Coordenação/síntese química , Ferro/química , Modelos Químicos , Termodinâmica
13.
Molecules ; 27(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35164110

RESUMO

Microorganisms are able to give rise to biofilm formation on food matrixes and along food industry infrastructures or medical equipment. This growth may be reduced by the application of molecules preventing bacterial adhesion on these surfaces. A new Schiff base ligand, derivative of hesperetin, HABH (2-amino-N'-(2,3-dihydro-5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)chromen-4-ylidene)benzohydrazide), and its copper complex, CuHABH [CuLH2(OAc)], were designed, synthesized and analyzed in terms of their structure and physicochemical properties, and tested as antibacterial agents. Their structures both in a solid state and in solution were established using several methods: FT-IR, 1H NMR, 13C NMR, UV-Vis, FAB MS, EPR, ESI-MS and potentiometry. Coordination binding of the copper(II) complex dominating at the physiological pH region in the solution was found to be the same as that detected in the solid state. Furthermore, the interaction between the HABH and CuHABH with calf-thymus DNA (CT-DNA) were investigated. These interactions were tracked by UV-Vis, CD (circular dichroism) and spectrofluorimetry. The results indicate a stronger interaction of the CuHABH with the CT-DNA than the HABH. It can be assumed that the nature of the interactions is of the intercalating type, but in the high concentration range, the complex can bind to the DNA externally to phosphate residues or to a minor/major groove. The prepared compounds possess antibacterial and antibiofilm activities against Gram-positive and Gram-negative bacteria. Their antagonistic activity depends on the factor-strain test system. The glass was selected as a model surface for the experiments on antibiofilm activity. The adhesion of bacterial cells to the glass surface in the presence of the compounds was traced by luminometry and the best antiadhesive action against both bacterial strains was detected for the CuHABH complex. This molecule may play a crucial role in disrupting exopolymers (DNA/proteins) in biofilm formation and can be used to prevent bacterial adhesion especially on glass equipment.


Assuntos
Antibacterianos , Complexos de Coordenação , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/crescimento & desenvolvimento , Hesperidina , Hidrazonas , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cobre/química , Cobre/farmacologia , Hesperidina/química , Hesperidina/farmacologia , Hidrazonas/química , Hidrazonas/farmacologia , Testes de Sensibilidade Microbiana
14.
Molecules ; 27(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35164228

RESUMO

Three new palladium complexes ([Pd(DABA)Cl2], [Pd(CPDA)Cl2], and [Pd(HZPY)Cl2]) bearing dinitrogen ligands (DABA: 3,4-diaminobenzoic acid; CPDA: 4-chloro-o-phenylenediamine; HZPY: 2-hydraziniopyridine) were synthesized, characterized, and tested against breast cancer (MCF-7), prostate carcinoma cell line (PC3) and liver carcinoma cell line (HEPG2). [Pd(DABA)Cl2] complex exhibited the highest inhibition percentage, lying between 68-71%. The hydrolysis mechanism of each palladium complex, the key step preceding the binding to the biological target, as well as their photophysical properties were explored by means of DFT and TDDFT computations. Results indicate a faster hydrolysis process for the Pd(DABA)Cl2 complex. The computed activation energies for the first and second hydrolysis processes suggest that all the compounds could reach DNA in their monohydrated form.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , Neoplasias/tratamento farmacológico , Nitrogênio/química , Paládio/química , Humanos , Células Tumorais Cultivadas
15.
Dalton Trans ; 51(11): 4338-4353, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35191437

RESUMO

Four copper(II)-flavonolate compounds of type [Cu(LR)(fla)] {where LR = 2-(p-R-benzyl(dipyridin-2-ylmethyl)amino)acetate; R = -OMe (1), -H (2), -Cl (3) and -NO2 (4)} have been developed as a structural and functional enzyme-substrate (ES) model of the Cu2+-containing quercetin 2,4-dioxygenase enzyme. The ES model complexes 1-4 are synthesized by reacting 3-hydroxyflavone in the presence of a base with the respective acetate-bound copper(II) complexes, [Cu(LR)(OAc)]. In the presence of dioxygen the ES model complexes undergo enzyme-type oxygenolysis of flavonolate (dioxygenase type bond cleavage reaction) at 80 °C in DMF. The reactivity shows a substituent group dependent order as -OMe (1) > -H (2) > -Cl (3) > -NO2 (4). Experimental and theoretical studies suggest a single-electron transfer (SET) from flavonolate to dioxygen, rather than valence tautomerism {[CuII(fla-)] ↔ [CuI(fla˙)]}, to generate the reactive flavonoxy radical (fla˙) that reacts further with the superoxide radical to bring about the oxygenative ring opening reaction. The SET pathway has been further verified by studying the dioxygenation reaction with a redox-inactive Zn2+ complex, [Zn(LOMe)(fla)] (5).


Assuntos
Complexos de Coordenação/metabolismo , Cobre/metabolismo , Flavonóis/metabolismo , Oxigênio/metabolismo , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cobre/química , Dioxigenases/química , Dioxigenases/metabolismo , Transporte de Elétrons , Elétrons , Flavonóis/química , Ligantes , Estrutura Molecular , Oxigênio/química , Quercetina/química , Quercetina/metabolismo
16.
Molecules ; 27(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35209226

RESUMO

Researchers are interested in Schiff bases and their metal complexes because they offer a wide range of applications. The chemistry of Schiff bases of heterocompounds has got a lot of attention because of the metal's ability to coordinate with Schiff base ligands. In the current study, a new bidentate Schiff base ligand, N-((1H-pyrrol-2-yl)methylene)-6-methoxypyridin-3-amine (MPM) has been synthesized by condensing 6-methoxypyridine-3-amine with pyrrole-2-carbaldehyde. Further, MPM is used to prepare Cu(II) and Co(II) metal complexes. Analytical and spectroscopic techniques are used for the structural elucidation of the synthesized compounds. Both MPM and its metal complexes were screened against Escherichia coli, Bacillus subtilis, Staphylococcus aureus and Klebsiella pneumoniae species for antimicrobial studies. Furthermore, these compounds were subjected to in silico studies against bacterial proteins to comprehend their best non-bonded interactions. The results confirmed that the Schiff base ligand show considerably higher binding affinity with good hydrogen bonding and hydrophobic interactions against various tested microbial species. These results were complemented with a report of the Conceptual DFT global reactivity descriptors of the studied compounds together with their biological scores and their ADMET computed parameters.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Cobalto/química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cobre/química , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/síntese química , Técnicas de Química Sintética , Complexos de Coordenação/síntese química , Teoria da Densidade Funcional , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Modelos Químicos , Modelos Moleculares , Estrutura Molecular , Bases de Schiff/química , Análise Espectral
17.
Angew Chem Int Ed Engl ; 61(11): e202115298, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-34982500

RESUMO

Multifunctional solar energy conversion offers a feasible strategy to solve energy, environmental and water crises. Herein, a series of platinum(II)-tethered chalcogenoviologens (PtL+ -EV2+ , E=S, Se, Te) is reported, which integrate the functions of photosensitizer, electron mediator and catalyst. PtL+ -EV2+ (particularly for PtL+ -SeV2+ )-based one-component solar H2 production could be triggered not only by EDTA, but also by facultative anaerobic and aerobic bacteria relying on a simplified mechanism, along with efficient antibacterial activities. In addition, by using real pool water, PtL+ -SeV2+ achieved multiple functions, including H2 production, antibacterial action and acid removal, which supplied a new strategy to solve various problems in real life via a single system.


Assuntos
Antibacterianos/química , Calcogênios/química , Complexos de Coordenação/química , Fármacos Fotossensibilizantes/química , Platina/química , Energia Solar , Antibacterianos/síntese química , Antibacterianos/farmacologia , Calcogênios/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , Escherichia coli/efeitos dos fármacos , Hidrogênio/química , Testes de Sensibilidade Microbiana , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/farmacologia , Platina/farmacologia , Staphylococcus aureus/efeitos dos fármacos
18.
Dalton Trans ; 51(4): 1489-1501, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34989381

RESUMO

We have synthesized and characterized three new ruthenium(II) diphosphine complexes containing an acylthiourea ligand, with the general formula [Ru(DPEPhos)(O,S)(bipy)]PF6, where DPEPhos = bis(2-(diphenylphosphino)phenyl)ether, bipy = 2,2'-bipyridine, and O,S = N,N-dimethyl-N'-(benzoyl)thiourea (1), N,N-dimethyl-N'-(furoyl)thiourea (2), and N,N-dimethyl-N'-(thiophenyl)thiourea (3), by several physicochemical techniques. We evaluated the ruthenium complexes for their cytotoxicity against two human cancer cell lines, A549 (lung) and MDA-MB-231 (breast), and two corresponding lines of non-cancer cells, MRC-5 (lung) and MCF-10A (breast). All the complexes are cytotoxic against the cancer cell lines; the IC50 values lie in the micromolar range (0.07-0.70 µM). Ruthenium complex 1 is more selective (7 times more active) toward lung cancer cells (A549) than toward non-cancer cells (MRC-5) and is 160 times more cytotoxic than cisplatin against A549 cells. Investigations of the mechanism of action of complex 1 in A549 cells demonstrated that it inhibits colony formation and promotes cell cycle arrest in the G1 phase and apoptotic cell death. DNA binding studies revealed that complexes 1-3 interact with the biomolecule via minor grooves. These complexes also interact with human serum albumin (HSA) and have affinity for site I by hydrophobic forces. Therefore, this new class of ruthenium complexes can act as cytotoxic agents, mainly for lung cancer treatment.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Complexos de Coordenação/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Compostos de Rutênio/farmacologia , Tioureia/análogos & derivados , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Complexos de Coordenação/uso terapêutico , Feminino , Humanos , Compostos de Rutênio/síntese química , Compostos de Rutênio/uso terapêutico , Tioureia/química
19.
Dalton Trans ; 51(4): 1395-1406, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34989741

RESUMO

The significance of the halido ligand (Cl-, Br-, I-) in halido[3-ethyl-4-phenyl-5-(2-methoxypyridin-5-yl)-1-propyl-1,3-dihydro-2H-imidazol-2-ylidene]gold(I) complexes (2-4) in terms of ligand exchange reactions, including the ligand scrambling to the bis[3-ethyl-4-phenyl-5-(2-methoxypyridin-5-yl)-1-propyl-1,3-dihydro-2H-imidazol-2-ylidene]gold(I) complex (5), was evaluated by HPLC in acetonitrile/water = 50:50 (v/v) mixtures. In the presence of 0.9% NaCl, the bromido (NHC)gold(I) complex 3 was immediately transformed into the chlorido (NHC)gold(I) complex 2. The iodido (NHC)gold(I) complex 4 converted under the same conditions during 0.5 h of incubation by 52.83% to 2 and by 8.77% to 5. This proportion remained nearly constant for 72 h. The halido (NHC)gold(I) complexes also reacted very rapidly with 1 eq. of model nucleophiles, e.g., iodide or selenocysteine (Sec). For instance, Sec transformed 3 in the proportion 73.03% to the (NHC)Au(I)Sec complex during 5 min of incubation. This high reactivity against this amino acid, present in the active site of the thioredoxin reductase (TrxR), correlates with the complete inhibition of the isolated TrxR enzyme at 1 µM. Interestingly, in cellular systems (A2780cis cells), even at a 5-fold higher concentration, no increased ROS levels were detected. The concentration required for ROS generation was about 20 µM. Superficially considered, the antiproliferative and antimetabolic activities of the halido (NHC)Au(I) complexes correlate with the reactivity of the Au(I)-X bond (2 < 3 < 4). However, it is very likely that degradation products formed during the incubation in cell culture medium participated in the biological activity. In particular, the high-cytotoxic [(NHC)2Au(I)]+ complex (5) distorts the results.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Complexos de Coordenação/síntese química , Ouro/química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/química , Humanos , Modelos Moleculares , Estrutura Molecular , Tiorredoxina Dissulfeto Redutase
20.
Inorg Chem ; 61(3): 1456-1470, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34995063

RESUMO

Indolo[2,3-d]benzazepines (indololatonduines) are rarely discussed in the literature. In this project, we prepared a series of novel indololatonduine derivatives and their RuII and OsII complexes and investigated their microtubule-targeting properties in comparison with paclitaxel and colchicine. Compounds were fully characterized by spectroscopic techniques (1H NMR and UV-vis), ESI mass-spectrometry, and X-ray crystallography, and their purity was confirmed by elemental analysis. The stabilities of the compounds in DMSO and water were confirmed by 1H and 13C NMR and UV-vis spectroscopy. Novel indololatonduines demonstrated anticancer activity in vitro in a low micromolar concentration range, while their coordination to metal centers resulted in a decrease of cytotoxicity. The preliminary in vivo activity of the RuII complex was investigated. Fluorescence staining and in vitro tubulin polymerization assays revealed the prepared compounds to have excellent microtubule-destabilizing activities, even more potent than the well-known microtubule-destabilizing agent colchicine.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Indóis/farmacologia , Microtúbulos/efeitos dos fármacos , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cristalografia por Raios X , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Heterocíclicos com 3 Anéis/química , Humanos , Indóis/química , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Nus , Microscopia de Fluorescência , Microtúbulos/metabolismo , Modelos Moleculares , Estrutura Molecular , Polimerização/efeitos dos fármacos , Tubulina (Proteína)/metabolismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...